Are We There Yet?

By Glen Heggie, Ed.D., R.T.N.M., F.C.A.M.R.T.

Recently, it struck me that just over 37 years ago I began my career in nuclear medicine technology—essentially half the average life expectancy for a male living in the United States. During that time, it seems that we spent a great deal of time and energy anticipating and preparing for the new, the novel and the upcoming improvements, techniques and equipment that characterize our field. Indeed, like a long road trip, it feels as though we focused on reaching the destination but have forgotten how far we have come.

For a change of pace, I have decided to stop and look backwards. I want to share a bit, to reminisce about a field that has never failed to enchant me, continues to challenge me and has provided me with an ever-changing landscape. My motivation for this is to provide those of you just entering the field with a sense of how different today’s environment is from the one that existed when I began—and to ask you to remember that as time progresses, you also will be faced with an even more dramatically different context as the rate of change continues to speed up.

My personal view of life, over the long term at least, is that it is a mix of blank spaces punctuated by memorable moments and a few events that we would perhaps prefer to forget. One of those memorable moments was the day I began my hospital-based nuclear medicine technology program in 1971. I remember it as one of those extraordinary “Star Trek” opportunities. Armed with three years of experience working in the hospital’s laboratory and morgue, I felt pretty comfortable with the environment, but was in awe when I finally was able to get my hands on a rectilinear scanner. Yet it got even better once the hot lab’s doors opened to me and I could start preparing radiopharmaceuticals made from scratch using raw chemicals that we labeled with either technetium or indium (we used both generator systems since the jury was still undecided on which was the better label).

As I said earlier, there are also those events that you would prefer to forget. In the early 1970s, we performed placental localizations.
Update on USP <797>—Informative Resources Available

By Lyn Mehlberg, B.S., C.N.M.T., F.S.N.M.T.S.

Looking for help in sorting out U.S. Pharmacopoeia (USP) General Chapter <797> on Pharmaceutical Compounding Sterile Preparations, also known as <797>? Here are several key, informative resources that should help you better understand these standards.

- The USP Web site provides several helpful resources. Visit www.usp.org, where you can find the <797> standards, a guidebook to interpreting them and other information about <797>.
- The American Society of Hospital System Pharmacists (ASHP) has developed an online Compounding Resource Center that provides several worthy resources, including the ASHP Self-Assessment Tool for Compounding Sterile Preparations (gap analysis). Another informative resource is the ASHP Discussion Guide on USP Chapter 797: Compounding Sterile Preparations. These resources can be found at: www.ashp.org/Import/PRACTICEANDPOLICY/PracticeResourceCenters/CompoundingResourceCenter.aspx.
- The SNM Committee on Pharmacopoeia developed a frequently asked questions (FAQ) document to answer common questions and provide some interpretative guidance on <797>. You can find the FAQ at http://interactive.snm.org/index.cfm?PageID=7882&RPID=7964. If you have questions that were not answered by the FAQ, please e-mail them to USP797@snm.org, and the committee will discuss your question and post the answer on the SNM Web site.
- In addition to the FAQ, you will find a letter submitted to the USP from SNM leadership requesting modification to the immediate-use exception allowing for more than two needle pokes through the vial septum. This letter specifically addresses the use of Ultratag® kits for the in vitro preparation of labeled red blood cells. For more information, visit http://interactive.snm.org/docs/SNM petition letter to USP - UltraTag 8.21.08 FINAL.pdf.

Be aware that The Joint Commission (TJC) is currently surveying nuclear medicine departments and requesting to see documentation and processes that demonstrate the department is aware of <797> and is making strides in adopting mechanisms to ensure that sterile compounding preparation recommendations have been implemented. The TJC is most interested in seeing that a department is meeting with its hospital pharmacy and developing plans to integrate these standards. One way to meet TJC expectations is to perform a gap analysis, such as the one mentioned above.

While implementation of these standards will definitely require nuclear medicine technologists and nuclear pharmacists to adapt their current processes, keep in mind that the intent of these standards is to protect patients by ensuring sterile procedures during the preparation of medications.
Inherent Challenges in Expanding Technology

By Lisa Hazen, C.N.M.T., F.S.N.M.T.S.

As the nuclear medicine industry grows and technology changes, it is inevitable that current guidelines and practices must also change. For several years, dedicated gamma camera technology advancement has taken a back seat to PET and PET/CT. With the introduction of higher resolution and faster scan time cameras, however, the world of nuclear cardiology imaging is on the move once again, and accreditation guidelines are being amended.

In the past, it was up to individual laboratories to choose to be accredited. But with changes in reimbursement, accreditation is at the top of everyone’s list of things to do, and there are several options to choose from, depending on the equipment in your lab.

The American College of Radiology (ACR), the American Society of Nuclear Cardiology (ASNC) and the Intersocietal Commission for the Accreditation of Nuclear Medicine Laboratories (ICANL) all recognize “traditional technology” as the gold standard for nuclear medicine. The water gets a little bit muddier as you begin to talk about the new technologies mentioned above. Rules are changing, and options for accreditation may vary somewhat as this newsletter goes to print.

Based primarily on quality control methodology, ACR testing was the first to accept the new technologies. By submitting an application and passing the SPECT tomographic image quality routine—which includes testing for uniformity and noise, spatial resolution measurements, and image contrast—nuclear laboratories are eligible to receive ACR’s stamp of approval.

ASNC takes a different approach and has formed a fast-track committee to review current guidelines used by the industry.

At this point, some questions arise: Do we want to stay with the same imaging time guidelines? Do we, and should we, accept “fast imaging” protocols? How do we evaluate data from this equipment to ensure it is the same quality as, or better than, current technology? Should ASNC standards lean more towards basic acceptance testing protocols?

Answers to these questions include the use of a Data Spectrum deluxe phantom to evaluate reconstructed contrast, resolution and uniformity. Detector flood field uniformities will be evaluated and cardiac count density will be tested using a SPECT cardiac phantom.

ICANL has gone a different route for now. In the past, ICANL strictly followed guidelines published by professional societies and incorporated site visits for quality reviews of the nuclear laboratories seeking accreditation. Only recently ICANL posted the following on its Web site in regards to new technologies: “Attention Nuclear Laboratories Using New Technologies: The ICANL board of directors has agreed to accept applications from laboratories utilizing new technologies and other novel imaging approaches that to date are not included in any guidelines published by the professional societies. These laboratories will be eligible for a one-year provisional accreditation while undergoing additional review. Laboratories will be required to provide additional documentation beyond what is included in the current application, which may include, but not be limited to, phantom images, clinical outcomes and/or correlation data and may potentially incur additional fees.”

A list of the extra requirements that may be required has not yet been released. The ICANL board of directors recently to discuss additional criteria necessary for laboratories using new technologies.

Looking to the future, we know that our industry will continue to face challenges as we incorporate the latest technology. As your emerging technologies representative to National Council, I want to keep our organization on the cutting edge of supporting changes in our profession and its technology. This will allow us to grow and compete in the medical community and provide the best possible outcomes for our ultimate goal—to provide excellent patient care.
If you have never attended an SNM Mid-Winter Educational Symposium, then you have missed exceptional continuing education (CE) programs. Make plans now to attend the next symposium Feb. 5–8, 2009, at the Hilton Clearwater in Clearwater, Fla. The pre-registration deadline is Jan. 7, 2009.

The four-day symposium will examine advances in the fields of CT imaging, molecular imaging, radiopharmaceutical sciences, instrumentation, nuclear cardiology and pediatric nuclear medicine. The technologist program described below was designed specifically for the working technologist, with all sessions scheduled on the weekend. For a detailed program preview, see the schedule on page 7 and visit the SNM Web site at www.snm.org/mwm.

SATURDAY, FEBRUARY 7
“Discussions in Imaging: A Formidable Trilogy” 2–5 p.m.
This session provides an overview of the current state of oncologic imaging, fundamentals of neurology and basics of cardiology.

“Current Topics in Pediatric Nuclear Medicine II” (Organized with the SNM Pediatric Council)
6–9 p.m.
This session provides useful clinical information on pediatric tumor-imaging sedation, bone densitometry and GU Imaging.

SUNDAY, FEBRUARY 8
“Progress in Patient Care: Nuclear Medicine’s Contribution”
10 a.m.–1 p.m.
This session provides information on refining operations in a PET facility after incorporation of CT, new developments in nuclear cardiology in both hybrid imaging modalities and advances in the evolving field of radiopharmaceuticals.

SNM 55th Annual Meeting Web Cast
Earn up to 23 VOICE credits from this activity, which includes streaming audio and power point presentations. Participants will have unlimited access to 17 selected CE sessions, opening plenary, three basic science summary sessions and highlights from the 55th Annual Meeting.

The Web cast is free-of-charge for all 55th Annual Meeting attendees. For other SNM members, the price is $165. Individual sessions are $25 each for SNM members and $40 for nonmembers.

SNMTS Approved as RCEEM+

At a recent board of trustees meeting, the American Registry of Radiologic Technologists (ARRT) added SNMTS to the limited number of Recognized Continuing Education Evaluation Mechanisms (RCEEMs) approved to award Category A+ continuing education (CE) credits. In addition, the board endorsed the title Nuclear Medicine Advanced Associate (NMAA) as a recognized physician extender.

“Recognition of the new position by ARRT is significant in that it helps establish support for advanced practice in nuclear medicine by organizations external to SNMTS,” said Martha Pickett, chair of the Advanced Practice Committee. “Education, certification, and continuing education and professional development are the foundations of professional practice, and formal recognition of the NMAA and SNMTS as a RCEEM provider for Category A+ brings us that much closer to making this new career track a reality.”

“SNM and SNMTS are making exciting strides in our profession,” said Mark Wallenmeyer, president of SNMTS. “Having SNMTS recognized as an RCEEM+ provider is the next step in the evolution of nuclear medicine technology. We are now able to provide the continuing educational opportunities that NMAA professionals will need. We look forward to working with ARRT and the Nuclear Medicine Technology Certification Board (NMTCB) in the future.”

What is a RCEEM?
A RCEEM is an organization that has developed a program to meet the rigorous criteria for approving educational programs as established by ARRT. Simply put, the RCEEM acts as a quality control mechanism for CE activities. In that context, the RCEEM assesses a learning activity to make sure that it is “well-planned, organized, and administered to enhance the knowledge, skill and professional performance that a technologist uses to provide services to patients, the public or other medical professions.”

To achieve RCEEM status, SNMTS developed the Verification of Involvement in Continuing Education (VOICE) Guidelines. These guidelines define the components necessary for educational sponsors to acquire continuing education credits from the SNMTS that meet ARRT’s guidelines. The SNMTS VOICE Guidelines are available on SNM’s Web site at: http://interactive.snm.org/docs/2007_VVOICE_Guidelines.pdf.

What is a RCEEM+?
A RCEEM+ is an organization recognized by ARRT as meeting specific criteria for awarding Category A+ credit.

What organizations have been designated as a RCEEM+?
Currently, only three organizations have been designated as RCEEM+—the American Society of Radiologic Technologists

Continued on page 7, see RCEEM+.
2009 Mid-Winter Educational Symposium

Wednesday, Feb. 4, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–5:15 p.m.</td>
<td>ACNP/ACNM Program</td>
</tr>
</tbody>
</table>

Thursday, Feb. 5, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 a.m.–5:30 p.m.</td>
<td>ACNP/ACNM Program</td>
</tr>
</tbody>
</table>

Friday, Feb. 6, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 8 a.m.–5:45 p.m. | CT Review for Nuclear Medicine Physicians
ACNP in collaboration with the Correlative Imaging Council
Organizer: Simin Dadparvar, M.D. |

Saturday, Feb. 7, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 10 a.m.–1 p.m. | Current Topics in Pediatric Nuclear Medicine – Part I
Pediatric Council
Organizer: Michael Gelfand, M.D.
CT Review for Nuclear Medicine Physicians (8 a.m.–12:15 p.m.)
Correlative Imaging Council in collaboration with ACNP
Organizer: Simin Dadparvar, M.D.
Cardiovascular Molecular Imaging
Cardiovascular Council
Organizers: Frank Bengel, M.D.
Mehran Sadeghi, M.D. |
| 1–2 p.m. | Lunch Break *(on your own)*
Discussions in Imaging: A Formidable Trilogy
SNM Technologist Section
Organizer: Nancy Swanston, C.N.M.T., RT(N), PET
Organizer: Simin Dadparvar, M.D. |
| 2–5 p.m. | Radiation Therapy: From External Beam to Systemic Approaches – Current Status and Future Prospects
Nuclear Oncology Council in collaboration with ASTRO
Organizers: Joseph Rajendran, M.D.
Chaitanya Divgi, M.D.
CT Review for Nuclear Medicine Physicians (1:30–5:45 p.m.)
Correlative Imaging Council in collaboration with ACNP
Organizer: Simin Dadparvar, M.D.
Organizer: Michael Gelfand, M.D.
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |
| 5–6 p.m. | After Bench to Bedside: Impact on Clinical Outcome – Part I
Nuclear Oncology Council in collaboration with CVC
Organizers: Diwakar Jain, M.D.
Joseph Rajendran, M.D.
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |
| 6–9 p.m. | Current Topics in Pediatric Nuclear Medicine – Part II
Pediatric Council & Technologist Section Combined Program
Organizer: Michael Gelfand, M.D.
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |

Sunday, Feb. 8, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 10 a.m.–1 p.m. | Progress in Patient Care: Nuclear Medicine's Contribution
SNM Technologist Section
Organizer: Nancy Swanston, C.N.M.T., RT(N), PET
GI Update
GI Council
Organizer: Alan Maurer, M.D.
Monitoring Cancer Therapy: Response to Toxicity – Potential for “Personalizing Patient Management”
Nuclear Oncology Council in collaboration with CVC
Organizers: Diwakar Jain, M.D.
Joseph Rajendran, M.D.
After Bench to Bedside: Impact on Clinical Outcome – Part II (8:30 a.m.–2:30 p.m.)
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |
| 1–2 p.m. | Lunch Break *(on your own)*
Current Topics in Pediatric Nuclear Medicine – Part II
Pediatric Council & Technologist Section Combined Program
Organizer: Michael Gelfand, M.D.
Organizer: Simin Dadparvar, M.D.
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |
| 2–5 p.m. | Radiation Therapy: From External Beam to Systemic Approaches – Current Status and Future Prospects
Nuclear Oncology Council in collaboration with ASTRO
Organizers: Joseph Rajendran, M.D.
Chaitanya Divgi, M.D.
CT Review for Nuclear Medicine Physicians (1:30–5:45 p.m.)
Correlative Imaging Council in collaboration with ACNP
Organizer: Simin Dadparvar, M.D.
Organizer: Michael Gelfand, M.D.
Society of Radiopharmaceutical Sciences (SRS) and the Radiopharmaceutical Science Council (RPSC)/SNM
Organizers: William Eckelman, Ph.D.
Jeffrey Norenberg, Pharm.D. |

CALL FOR Abstracts

Present your innovative research to an audience of your peers at SNM’s 56th Annual Meeting, June 13–17, 2009, in Toronto, Canada. The online abstract submission site is now open, and submission deadline is Jan. 13, 2009. For more information, visit www.snm.org/abstracts.
using labeled human serum albumin. In the process of doing my first rectilinear study for a placental localization, I had to tape a point source on the mother's symphysis pubis. All was fine until the baby suddenly kicked my arm just as I was pressing the tape down. I still have no idea how I had arrived in the hall with my patient on the stretcher some 10 feet away but clearly recall her laughing at my abrupt flight! At that time, ultrasound was not used for this procedure, and nuclear medicine was seen as the best and safest technique for locating the placenta (and for that matter, assessing pericardial effusions and localizing the boundaries of kidneys for radiotherapy planning purposes).

Just as I was becoming comfortable with the technology and our department's procedures, a new beast arrived in the department—our first gamma camera. With our single-headed Picker Dyna camera and its Polaroid camera with a 3/4-inch video recorder (aka “data analyzer”), we were able to perform the most sophisticated procedures available. Using the “data processor,” instead of centering two thyroid probes over the kidneys—located first by injecting the patient with mercury-197—and placing a third probe over the bladder with each probe wired to a separate ink-filled pen tracking along a moving strip of graph paper, we could use the video tape and gamma camera to produce renograms. This system even allowed us to image whole body distribution of a 100 mCi I-131 therapy dose by placing the pinhole collimator at the patient's area of interest.

In 1971—our first gamma camera. With our single-headed Picker Dyna camera and its Polaroid camera with a 3/4-inch video recorder (aka “data analyzer”), we were able to perform the most sophisticated procedures available. Using the “data processor,” instead of centering two thyroid probes over the kidneys—located first by injecting the patient with mercury-197—and placing a third probe over the bladder with each probe wired to a separate ink-filled pen tracking along a moving strip of graph paper, we could use the video tape and gamma camera to produce renograms. This system even allowed us to image whole body distribution of a 100 mCi I-131 therapy dose by placing the pinhole collimator at the patient's area of interest.

All was moving along well. We had the scanner, the camera, a busy in-vitro laboratory running each weekday evening and scintiangiograms achieved by rapidly pulling 16 sequential Polaroid films from a film pack. Upon pealing off their backings and coating with a fixer, these photos were hand-pasted to a piece of bristle board that had a series of holes cut into it to display the acquired images. Lacking the ability to alter image intensity after the fact, the photos were obtained by using a camera that had three lenses, each set with a different f-stop to create one image that was too bright, one too dark and hopefully one that was “just right.”

Nuclear medicine was evolving rapidly, but so was radiography, and one day we were informed that a new device had been installed that would “put us out of business”—yup, you guessed it—the hospital had acquired a CT scanner. Isn’t it ironic that today we have hybrid machines that have brought together these two imaging technologies?

Now, I want you to understand that all of these events occurred in a span of two years. I haven't addressed all of the facts that in 1971 we still had functional wet-baths available for developing film, a full-time darkroom technician or that we moved from double-emulsion to single-emulsion film in an attempt to improve the resolution and image quality of nuclear medicine studies. Nor did the rate of change slow during subsequent years. Following these events, we saw the advent of ultrasound, MRI, PET, SPECT, mammography, DEXA studies and continuous updates and improvements in computer technology. Additionally, new diseases and conditions were identified: AIDS, Legionnaires', bird flu and a variety of antibiotic-resistant bacteria.

This leads me to some obvious questions: How were all of these changes and new skill sets incorporated into our training programs? and How did, do and will we cope with a knowledge and skill base that is constantly expanding? Although it is true that over the years programs have broadened their curriculum and added material, there is only so much that can be compressed into a given time span. Whereas some of the old material has been dropped or de-emphasized, it is trivial in comparison to what has been added. Knowledge continues to expand, equipment continues to evolve and demand for both continues to increase. The simple truth is that the field I entered in 1971 was in its infancy and bears little resemblance to nuclear medicine today.

The complexity and capabilities of today's technology and its relationship with other modalities demands a broader range of skills and depth of knowledge than ever before from those working in the discipline. My personal view is that a three-pronged approach will be necessary to meet this requirement. First, sufficient time needs to be available for incoming students and entry-level technologists to learn and then master the basic requisite skills. Second, the curriculum needs to be constantly adjusted, updated and disseminated widely to meet the ever-changing knowledge and skill requirements. Third, career-tiering needs to be established through the recognition of advanced levels of performance, education and capabilities.

As you read through this edition of *Uptake*, you will see that SNMTS is doing exactly those things: developing new curriculum, creating an advanced associate position and so on. Although established programs can and do provide for many of our needs, it ultimately falls to the individual to find the motivation, opportunity and persistence to continue professional growth within the field.

At the beginning of this article, I asked the question: “Are we there yet?” The clear answer to that is “No,” because the trip is never-ending. We never arrive—we just keep moving forward.
This year’s academy was held October 24–26 in Orlando, Fla., and by all accounts, it was another great success (not to mention a whole lot of fun!). The goal of the two-day academy is to assemble a group of SNMTS members who understand the crucial role of leadership development and are eager to begin the path to SNMTS leadership and organizational success. More information on the 2009 academy can be found in subsequent issues of *Uptake* and on the SNM Web site (www.snm.org).

SNMTS continues to advocate for the Consistency, Accuracy, Responsibility and Excellence (CARE) in Medical Imaging and Radiation Therapy legislation, supported also by the Alliance for Quality Medical Imaging and Radiation Therapy, a group of 20 radiologic science organizations. Passage of the bill would result in enhanced patient safety and a higher quality of medical imaging and radiation therapy services. Results of the Senate mark-up should be available soon.

Our international ties are getting stronger. We have extended SNMTS member rates for SNM meetings to members of the Canadian Society of Nuclear Medicine to enable them to join us next year for the Mid-Winter Symposium in Florida and the Annual Meeting in their fair city of Toronto.

Speaking of which—the Mid-Winter Educational Symposium will be held Feb. 5–8, 2009, in Clearwater, Fla. This will be another wonderful opportunity to hone skills and learn from some of the brightest minds practicing in the field of nuclear medicine today. I hope to see many of you there. In addition, information is now available on the Web site for the 56th Annual Meeting, June 13–17, in Toronto, Canada. Don’t forget to update your passport!

Perhaps reading about our many educational and training opportunities has piqued your interest in getting involved in SNMTS. If so, please contact me at spfdmark1@mchsi.com. I always look forward to hearing from you.
Call for Nominations: Technologist Section 2009–2010 General Election

SNMTS would like to announce that the following positions will be elected for 2009–2010 by the general membership:

- President-elect (two-year term: first year as president-elect, second as president),
- Secretary (one-year term),
- Member-at-large (2 positions) (three-year term), and
- Finance committee member (three-year term).

Each position has specific qualifications for office. All candidates must be active members of the SNMTS, in good-standing and endorsed by their local chapter. Qualifications, duties and responsibilities for specific offices are detailed in the application form on the Web site (www.snm.org).

Nominations must be submitted by Dec. 22, 2008 to the SNM national office. For more information, contact Nikki Wenzel-Lamb at nwenzel@snm.org or 703-652-6766.

Apply Now for Scholarships!

The following Technologist Section scholarships are available for next year.

- **Paul Cole Scholarships**—These scholarships honor the memory of a champion of student education, Paul Cole, a former SNMTS president.
 - **Amount:** $1,000
 - **Deadline:** Jan. 15, 2009
 - **Eligibility:** Students enrolled in or accepted for enrollment in associate, baccalaureate or certificate programs in nuclear medicine technology

- **PDEF Mickey Williams Minority Student Scholarships**—This scholarship honors the memory of Mickey Williams, a former SNMTS president from Jamaica.
 - **Amount:** $5,000
 - **Deadline:** Jan. 15, 2009
 - **Eligibility:** Minority students enrolled in or accepted for enrollment in an associate- or baccalaureate-level program in nuclear medicine technology

- **PDEF Professional Development Scholarship**—This scholarship supports students pursuing an advanced degree.
 - **Amount:** $5,000
 - **Deadline:** Jan. 15, 2009
 - **Eligibility:** Students with a degree in nuclear medicine technology who are matriculating in an accredited graduate degree program in nuclear medicine

For more information about these and other scholarships, go to www.snm.org/grants and click on ‘For Technologists’.