Continuing Medical Education Article

Dynamic Bone Imaging with 99mTc-Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications

JNM, April 2013, Volume 54, Number 4

Authors

Ka Kit Wong1,2 and Morand Piert1

1Nuclear Medicine/Radiology Department, University of Michigan Hospital, Ann Arbor, Michigan; and 2Nuclear Medicine Service, Department of Veterans Affairs Health System, Ann Arbor, Michigan

Disclosure

In accordance with ACCME Revised Standards for Commercial Support and SNM Conflict-of-Interest Policy, the authors have indicated no relevant relationships that could be perceived as a real or apparent conflict of interest. Disclosure of a relationship is not intended to suggest or to condone bias but is made to provide participants with information that might be of potential importance to their evaluation of the activity.

Target Audience

This article contains information of value to nuclear medicine physicians, radiologists, nuclear medicine technologists, and clinicians utilizing skeletal imaging.

Objectives

On successful completion of this activity, participants should be able to…

1. Appreciate the physiologic mechanisms underlying uptake of bone-seeking radiopharmaceuticals used to assess bone perfusion and turnover and note the differences between 18F-NaF and 99mTc-labeled diphosphonates.

2. Discuss the use of bone scintigraphy for evaluation of bone viability and metabolic bone disorders and appreciate the potential role of quantitative dynamic 18F-NaF PET for evaluation of response to therapy.

3. Discuss indications for 99mTc-labeled diphosphonate bone scans and 18F-NaF PET/CT for oncologic staging and appreciate quantitative methods on static and dynamic bone imaging as imaging biomarkers of treatment response using novel systemic therapies for metastatic castrate-resistant prostate cancer as a model.
1. Autoradiography has shown that bone-seeking radiotracers such as 99mTc-diphosphonates localize in which part of bone?
A. Medullary bone.
B. Bone marrow.
C. Mineralization front (osteoid).
D. Osteoclasts.

2. Using compartmental modeling for quantitative 18F-fluoride ion (18F-NaF) PET, which kinetic parameter is most closely associated with bone metabolism (or bone turnover)?
A. K_1 (forward capillary transport).
B. k_2 (reverse capillary transport).
C. k_3 (binding to the bone matrix).
D. K_i (net transport into bone).

3. Comparing 18F-NaF PET and 99mTc-MDP bone scanning, which of the following statements is true?
A. Using typical administered doses in adults, the radiation effective dose for 18F-NaF PET is lower than that of 99mTc-MDP bone scanning.
B. 18F-NaF PET can evaluate the soft-tissue phase (second phase) better than 99mTc-MDP bone scanning.
C. 18F-NaF PET is less sensitive than 99mTc-MDP bone scanning for detecting bone metastases from lung cancer.
D. 18F-NaF PET allows quantitative kinetic modeling not available with 99mTc-MDP bone scanning.

4. Comparing dosimetry between 18F-NaF PET and 99mTc-MDP bone scanning, which of the following statements is correct?
A. 18F-NaF has a much lower effective dose than 99mTc-MDP due to the short 109-min physical half-life of 18F.
B. With 99mTc-MDP, the bladder wall is the organ receiving the largest radiation dose.
C. With 18F-NaF, the bone surfaces are receiving the largest radiation dose.
D. Patient preparation for 18F-NaF PET should include good hydration to reduce the effective radiation dose to the patient.
5. Which pattern on 3-phase 99mTc-MDP bone scanning is most predictive of viability and a subsequent uncomplicated healing course for a vascularized fibula graft in the mandible?
 A. Increased uptake in the graft at 2–11 d after surgery.
 B. Decreased uptake in the graft at 2–11 d after surgery.
 C. Increased uptake in the graft at 3 mo after surgery.
 D. Decreased uptake in the graft at 3 mo after surgery.

6. Which of the following is a new efficacious radionuclide therapy for castrate-resistant prostate cancer?
 A. Cabazitaxel.
 B. Sipuleucel-T.
 C. Denosumab.
 D. 223Ra-dichloride.

7. Bone metastases from which cancer type are more readily detected with bone scanning (either 18F-NaF PET or 99mTc-MDP) than with 18F-FDG PET?
 A. Prostate cancer.
 B. Lung cancer.
 C. Colorectal cancer.
 D. Breast cancer.

8. Which quantitative parameter on either 18F-NaF PET or 99mTc-MDP bone scans is indicative of a successful response to risedronate in Paget disease?
 A. Increasing whole-body retention index on 99mTc-MDP bone scanning.
 B. Decreasing plasma clearance of 18F-NaF radiotracer to the skeleton on PET imaging.
 C. Increasing regional SUV in affected bone on 18F-NaF PET.
 D. Decreasing renal clearance of 99mTc-MDP radiotracer on bone scintigraphy.

9. Monitoring of treatment effects on bone mineral density in osteoporosis is best performed using which test?
 A. Quantitative 18F-NaF PET.
 B. Serum alkaline phosphatase measurements.
 C. Whole-body retention index on 99mTc-MDP bone scanning.
 D. Dual-energy x-ray absorptiometry.
10. Bisphosphonate pharmaceuticals have a high affinity to which part of bone?
A. Bone marrow.
B. Osteoclasts.
C. Medullary bone.
D. Inorganic bone matrix.