Dear Author,

This letter describes how to proof your manuscript slated for an upcoming issue of the Journal of Nuclear Medicine Technology. This PDF is the only set of proofs you will receive for your article.

This file contains:
Important notice to authors
Reprint order form
Page proofs and queries for your article

After printing the PDF file, please read the page proofs carefully and:
1) indicate changes or corrections in the margin of the page proofs;
2) answer all queries (AQ1, AQ2, AQ3, etc.) on the last page;
3) proofread any tables and equations carefully;
4) check that any Greek, especially µ (mu), has translated correctly.

Within 48 hours, please return the original PDF set of page proofs to the address given below.

If there are color images in your article, you will be receiving a hard-copy color proof before publication to review color reproduction and orientation.

If you have any problems or questions, please contact me. PLEASE ALWAYS INCLUDE YOUR ARTICLE NUMBER WITH ALL CORRESPONDENCE.

Sincerely,

Susan Alexander
Associate Director of Publications
Society of Nuclear Medicine
1850 Samuel Morse Drive
Reston, VA 20190-5316
Tel: (703) 708-9000
Fax: (703) 708-9018
IMPORTANT NOTICE TO AUTHORS

You must proofread and return these page proofs to the Society of Nuclear Medicine within 48 hours of receipt.

Failure to do so may result in your article being published without your corrections.

Your cooperation in adhering to our tight production deadline is greatly appreciated.

Please return these page proofs marked with your corrections to:

Susan Alexander
Associate Director of Publications
Society of Nuclear Medicine
1850 Samuel Morse Drive
Reston, VA 20190-5316
USA

Corrections may also be faxed to (703) 708-9018 or e-mailed to jnm@snm.org.

If you have any questions, please call Susan Alexander at (703) 708-9000.
Please place your order at the time you review your page proofs. Reprints ordered later are priced much higher if the article contains color images. Your order will be processed and shipped within 10 business days after the article has been published and payment has been received.

Prices

<table>
<thead>
<tr>
<th>Length of article</th>
<th>100 reprints</th>
<th>200 reprints</th>
<th>300 reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. customers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–4 pages</td>
<td>$381</td>
<td>$407</td>
<td>$472</td>
</tr>
<tr>
<td>5–8 pages</td>
<td>$602</td>
<td>$647</td>
<td>$730</td>
</tr>
<tr>
<td>9–12 pages</td>
<td>$828</td>
<td>$878</td>
<td>$986</td>
</tr>
<tr>
<td>13–16 pages</td>
<td>$1049</td>
<td>$1090</td>
<td>$1248</td>
</tr>
<tr>
<td>17–20 pages</td>
<td>$1268</td>
<td>$1332</td>
<td>$1500</td>
</tr>
<tr>
<td>Cover page**</td>
<td>$211</td>
<td>$303</td>
<td>$393</td>
</tr>
<tr>
<td>Non-U.S. customers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–4 pages</td>
<td>$483</td>
<td>$528</td>
<td>$627</td>
</tr>
<tr>
<td>5–8 pages</td>
<td>$758</td>
<td>$846</td>
<td>$908</td>
</tr>
<tr>
<td>9–12 pages</td>
<td>$1050</td>
<td>$1156</td>
<td>$1341</td>
</tr>
<tr>
<td>13–16 pages</td>
<td>$1328</td>
<td>$1444</td>
<td>$1702</td>
</tr>
<tr>
<td>17–20 pages</td>
<td>$1611</td>
<td>$1782</td>
<td>$2058</td>
</tr>
<tr>
<td>Cover page**</td>
<td>$283</td>
<td>$414</td>
<td>$548</td>
</tr>
</tbody>
</table>

*Prices are valid through the December 2006 issue.
**Cover page includes journal title, article title, and authors' names.

The minimum order is 100 copies. For orders over 300 copies, call for additional information and pricing: Steve Klein, Production Manager, Society of Nuclear Medicine, 703-708-9000, ext. 1213.

Reprint Information

Title of article: ___

Length of article: _______ printed pages

Publication date of article: ___________________

Cost of reprints: $___________

Cost of cover page (if ordered): $__________

Total cost: $__________

Customer Information

Name: ___

Shipping address: ___

City: __

State or country: ______________________ Postal code: __________

Phone number: _______________________

Fax number: ________________________

E-mail address: _______________________

Payment Information

Orders must be paid for in advance (purchase orders are not accepted). VISA and MasterCard are the preferred methods of payment.

Type of credit card: □ VISA □ MasterCard

Card number: __

Expiration date: _______________________

Signature: __

Name as it appears on the card (please print): ________________________________

Do you require a receipt? □ Yes (include e-mail address or fax number above) □ No

You may also pay by sending a check or money order (made payable to Sheridan Reprints) to the following address:

Sheridan Reprints
Attn: Tamara Groft
450 Fame Avenue
Hanover, PA 17331

Regardless of payment method, please fax this Reprint Order Form to Sheridan Reprints at 717-633-8929. The 717-633-8929 number is for reprint orders only. Do not fax your article proofs to this number.
Essential Role of Nuclear Medicine Technology in Tositumomab and 131I-Tositumomab Therapeutic Regimen for Non-Hodgkin’s Lymphoma*

William C. Cole¹, Jennifer Barrickman², and Glen Bloodworth, CNMT²

¹University of Colorado Health Sciences Center, Denver, Colorado; and ²GlaxoSmithKline Oncology, Research Triangle Park, North Carolina

Nuclear medicine technology has long been focused on diagnostic imaging, with therapeutics left mostly to other medical disciplines. However, after many years in development, radioimmunotherapy (RIT) finally has become a clinical reality in many nuclear medicine departments. The nuclear medicine technologist is a key player in the successful implementation of RIT. Delivery of a therapeutic regimen of tositumomab and 131I-tositumomab provides a model for the technologist’s roles and responsibilities in the developing field of RIT. This article examines the clinical rationale, logistic requirements, and imaging and dosimetry procedures required by this treatment regimen. Upon completion of this article, the reader should be able to describe the target patient population and identify the roles and responsibilities of various members of the treatment team. The reader also will gain an understanding of the treatment process, including drug administration, imaging, and therapeutic dose calculations.

Key Words: non-Hodgkin’s lymphoma; radioimmunotherapy

Nuclear medicine technology traditionally has focused on diagnostic imaging, with therapeutics left mostly to other medical disciplines. However, after many years in development, radioimmunotherapy (RIT) finally has become a clinical reality in many nuclear medicine departments. The nuclear medicine technologist is a key player in the successful implementation of RIT. Delivery of a therapeutic regimen of tositumomab and 131I-tositumomab provides a model for the technologist’s roles and responsibilities in the developing field of RIT. This article examines the clinical rationale, logistic requirements, and imaging and dosimetry procedures required by this treatment regimen. Upon completion of this article, the reader should be able to describe the target patient population and identify the roles and responsibilities of various members of the treatment team. The reader also will gain an understanding of the treatment process, including drug administration, imaging, and therapeutic dose calculations.

Received Sep. 16, 2005; revision accepted Mar. 14, 2006.
For correspondence or reprints contact: Glen Bloodworth, CNMT, GlaxoSmithKline Oncology, 229 White Oak Dr., Wilmington, NC 28409.
E-mail: glen.a.bloodworth@gsk.com

For any questions related to the content of this article, contact: Glen Bloodworth, CNMT, GlaxoSmithKline Oncology, 229 White Oak Dr., Wilmington, NC 28409.
E-mail: glen.a.bloodworth@gsk.com

that these medical professionals receive training by GlaxoSmithKline on-site trainers. The U.S. Food and Drug Administration mandates that these medical professionals receive training by GlaxoSmithKline on-site trainers. Table 1 lists some of the main functions required in the successful implementation of the tositumomab and ¹³¹I-tositumomab therapeutic regimen.

Throughout the process, a site coordinator is responsible for communication among all team members in an effort to provide a cohesive treatment regimen for the patient. Specifically, the site coordinator plans the treatment schedule, submits order documents to the nuclear pharmacist, and coordinates patient scheduling with all participating team members. The site coordinator may be any one of the health professionals listed above or another staff member capable of effectively managing simultaneous tasks. Given the nature of the tositumomab and ¹³¹I-tositumomab therapeutic regimen, the nuclear medicine technologist is often the logical choice for site coordinator. Figure 2 summarizes the main steps in the tositumomab and ¹³¹I-tositumomab regimen.

Training

Training of site personnel is a critical component of successful implementation of the tositumomab and ¹³¹I-tositumomab therapeutic regimen. As part of the training process, each treatment site must demonstrate competency in patient dose administration and calculations. Competency is documented by the completion of the imaging and dose determination steps after 3 successful attempts in 6 possible attempts. Information is collected on manufacturer-provided dosimetry worksheets, which are faxed to the Bexxar Service Center (BSC), a single point of contact for all aspects of the tositumomab and ¹³¹I-tositumomab therapeutic regimen. A template (Excel; Microsoft Corp.) has been developed to aid in performing the dosimetry calculations. Once a site has successfully completed this certification process, it is no longer necessary to submit the dosimetry worksheets to the BSC. However, the BSC is always willing to provide assistance even after the certification process is complete.

Premedications

Thyroid-blocking agents are commonly used in nuclear medicine. For the tositumomab and ¹³¹I-tositumomab therapeutic regimen, one of the following regimens must be started at least 24 h before the dosimetric dose and continued for 2 wk after the therapeutic dose: a saturated solution of potassium iodide (4 drops orally 3 times per day), Lugol’s solution (20 drops orally 3 times per day), and potassium iodide tablets (130 mg orally once per day).

In addition to thyroid protection, patients should receive premedication with 650 mg of acetaminophen and 50 mg of diphenhydramine 30–60 min before the administration of each of the unlabeled (“cold”) tositumomab doses to reduce the incidence of possible infusion-related events (e.g., fever, rigor or chills, sweating, hypotension, dyspnea, bronchospasm, and nausea). If any of these events do occur, reduction of the infusion to 50% the initial rate (450 mg of unlabeled tositumomab over 60 min) is recommended. It may be necessary to interrupt the infusion if the symptoms are severe. Many times, the infusion of unlabeled tositumomab is conducted in the oncology infusion area so that a nuclear medicine technologist may actually administer only ¹³¹I-tositumomab—a brief 20-min infusion followed by a flush.

Dosage and Dose Administration

The tositumomab and ¹³¹I-tositumomab therapeutic regimen is administered intravenously in 2 steps, the dosimetric step and the therapeutic step. Each step consists of 2 separate components: the unlabeled, or cold, infusion and the radiolabeled, or hot, infusion. The prescribed dosage for each step is shown in Table 2. The therapeutic dose of ¹³¹I-tositumomab is given in centigrays, the unit of absorbed dose. Dosimetry, the process of relating the prescribed absorbed dose to a specific megabequerel value, is described in detail in the next section.

Both the dosimetric and the therapeutic infusions involve 2 nearly identical components: cold-antibody (tositumomab) infusion and hot-antibody (¹³¹I-tositumomab) infusion. The only difference between the 2 is the activity of the hot antibody infused (diagnostic versus therapeutic activity levels).
Dose shielding, prevention of spills and contamination, and minimization of exposure to personnel are important considerations for each step.

After the administration of premedications, 450 mg of unlabeled tositumomab antibody are first delivered to the patient over 1 h. The antibody is prepared in a volume of 50 mL and is delivered to the patient via an infusion pump. This step often takes place in the oncology infusion area.

Immediately after the cold infusion, the patient is administered the radiolabeled, or hot, 131I-tositumomab antibody. This step often is performed in the nuclear medicine department. The hot antibody is prepared and delivered to...
the site of the infusion in a 30-mL total volume in a 60-mL syringe. The syringe is loaded into a syringe pump, and the total volume is delivered over 20 min; this step is followed by a thorough flush of the tubing with 0.9% saline. It is strongly recommended that personnel responsible for setting up and administering the hot infusion thoroughly familiarize themselves with the procedure by making several practice runs with nonradioactive syringes, tubing, syringe pump, and shielding before patient arrival to minimize unanticipated problems that may arise. To minimize the risk of contamination, exposed work surfaces, such as countertops, infusion chairs, and floors, should be draped with absorbent pads. Throughout the infusion process, every effort should be made to adhere to the concept of “as low as reasonably achievable” by minimizing the amount of time spent near the source, maximizing the distance from the source, and using shielding whenever possible to reduce the dose to infusion personnel. Finally, after the infusion is complete, the area should be surveyed for contamination with a survey meter.

Imaging and Dosimetry

Nuclear medicine technologists are focused primarily on patient imaging. However, what role does imaging have in therapy? The ultimate goal in drug therapy is to provide the most effective dose to optimize benefit and minimize toxicity. The tositumomab and \(^{131}\text{I}-\text{tositumomab therapeutic regimen} \) seeks to approach this goal by evaluating individual patient drug distribution and elimination over time. These aspects of drug behavior are termed pharmacokinetics. With conventional pharmaceutical agents, the best that clinicians can do in this regard is to measure the time course for the drug (or metabolites) in the blood. With radiolabeled agents, however, a much more accurate estimate of patient-specific pharmacokinetics is possible. Because \(^{131}\text{I}\) is both a \(\gamma\)-emitter and a \(\beta\)-emitter, it is possible to obtain whole-body \(\gamma\)-counts from imaging of the patient after a relatively small (dosimetric) dose (184 MBq [5 mCi]) of \(^{131}\text{I}-\text{tositumomab} \) to estimate the total body residence time (TBRT). This determination allows consideration of the factors shown to be influential in the pharmacokinetics of the tositumomab and \(^{131}\text{I}-\text{tositumomab} \) therapeutic regimen. Such factors include age, sex, weight, bone marrow involvement, spleen size, and renal function. In addition to enabling an estimation of TBRT, imaging also provides an opportunity for the nuclear medicine physician to evaluate biodistribution with the same isotope, unlike other regimens that use a \(\gamma\)-emitting surrogate to predict biodistribution. However, unlike most nuclear medicine imaging procedures, this process is intended to evaluate gross biodistribution only, not provide detailed diagnostic information.

The expected biodistribution after a dosimetric dose of \(^{131}\text{I}-\text{tositumomab} \) is illustrated by whole-body scans of a patient with the typical pattern for NHL (Fig. 3), whereas biodistribution may be different in patients with solid tumors or other cancer types, such as a retroperitoneal tumor with thyroid uptake (Fig. 4) or cutaneous lymphoma (Fig. 5), respectively. In addition to visual inspection of the images, biodistribution also may be assessed by evaluating the TBRT (day 6 or 7). For the tositumomab and \(^{131}\text{I}-\text{tositumomab} \) therapeutic regimen, the expected biodistribution is defined as a TBRT of between 50 and 150 h.

As imaging takes place at 3 different times (day 0 within 1 h of dosing; day 2, 3, or 4; and day 6 or 7) after the dosimetric administration of \(^{131}\text{I}-\text{tositumomab} \), it is important to maintain constant imaging parameters. For example, it is important that images are acquired by use of the same camera with the same head-to-table distance, scan length (in cm), scan speed, collimator, field of view, region of interest, and energy window. Simply put, the imaging parameters must be exactly the same for each imaging session. This requirement also applies to obtaining background and standard counts.

TABLE 2

Prescribed Dosage for Each Step of Tositumomab and \(^{131}\text{I}-\text{Tositumomab Therapeutic Regimen} \)

<table>
<thead>
<tr>
<th>Dose</th>
<th>Tositumomab</th>
<th>(^{131}\text{I}) Tositumomab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosimetric</td>
<td>450 mg</td>
<td>185 MBq (5 mCi)</td>
</tr>
<tr>
<td>Therapeutic</td>
<td>450 mg</td>
<td>75 cGy (platelet count of >150,000/mm(^3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65 cGy (platelet count of >100,000/mm(^3)) and <150,000/mm(^3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regimen is not indicated for patients with platelet count of <100,000/mm(^3))</td>
</tr>
</tbody>
</table>

FIGURE 3. Expected biodistribution showing blood-pool activity in heart and major vessels on first scan (A) and decreasing in intensity on second scan (B) and third scan (C) for patient with NHL. Moderate uptake in liver and spleen on first scan progressively diminishes in intensity on second and third scans. Anterior views.
Determining the TBRT is done by simply drawing a “best-fit” straight line between the whole-body counts obtained on day 0 and those obtained on subsequent days on a semilogarithmic graph of percentage injected activity on the y-axis and time from the dosimetric dose on the x-axis. In the first estimate of TBRT after the second imaging time, one simply connects the dots. This first estimation is done only to determine whether the radiopharmacy may require 2 vials of 131I-tositumomab instead of 1 to prepare the patient-specific dose. The need for 2 vials becomes important if the estimated therapeutic dose to the patient may exceed 3,700 MBq (100 mCi). The final estimation of TBRT at 3 imaging times requires the best-fit straight line between the second and third time points (Fig. 6).

The TBRT can be used in the calculation of the required megabecquerel amount of 131I-tositumomab: 131I activity (MBq) = [activity hours (MBq/h)/residence time (h)] × [desired total body dose/75 cGy].

The value for activity hours (describing the amount of activity in the body and the time that it is there, on the basis of patient sex and effective mass or weight) is obtained simply from a table provided in the training. The last element of the equation describes the fact that the recommended total body dose (cGy) for the tositumomab and 131I-tositumomab therapeutic regimen is 75 cGy for patients with a platelet count of more than 150,000/mm3. For cases of mild thrombocytopenia (platelet count of 100,000–150,000/mm3), the recommended total body dose is attenuated to 65 cGy. The tositumomab and 131I-tositumomab therapeutic regimen is not indicated for patients with a platelet count of less than 100,000/mm3. Although it is important to understand the basic concepts for calculating the patient-specific dose, the template mentioned previously will automatically perform all calculations and curve fitting.

Residual Activity

The determination of residual activity is another critical element required to obtain an accurate measure of the injected activity, thereby ensuring that the patient received the full prescribed dose of 131I-tositumomab. The process is simply to gather all infusion-related equipment, including the syringe used for the radioactive dose, and analyze the equipment with a dose calibrator as soon as practicable after the infusion is completed. The residual activity is subtracted from the measured activity in the syringe before administration and results in the net administered activity. Measuring and recording residual activity is required in both the dosimetric and the therapeutic steps and is critically important.

Patient Release Methodology

Although it will be the responsibility of the radiation safety officer to determine when a patient can be released after a therapeutic dose of tositumomab and 131I-tositumomab, the nuclear medicine technologist may be called upon to assist, and it is useful to review the principles governing that determination. Patient release is not dependent on the

FIGURE 4. Expected biodistribution showing blood-pool activity in heart and major vessels on first scan (A) and decreasing in intensity on second scan (B) and third scan (C) for patient with retroperitoneal adenopathy. Moderate uptake in liver and spleen on first scan progressively diminishes in intensity on second and third scans. Tumor uptake is seen as 2 focal areas of moderate uptake in upper to middle abdomen, best seen on second scan, corresponding to retroperitoneal adenopathy seen on CT scan. “Butterfly”-shaped uptake seen in neck on third scan represents thyroid uptake. Anterior views.

FIGURE 5. Expected biodistribution for patient with lymphomatous nodules. Multiple areas of various sizes, configuration, and intensity are seen in right upper chest wall laterally, epigastric region just to right of midline, lower right abdomen laterally, bilateral inguinal regions, and proximal right thigh on second scan (B). Some of these areas persist on third scan (C). These areas represent cutaneous lymphomatous nodules. Focal intense uptake is first seen in left upper abdomen on third scan, most likely representing activity in fundus of stomach. Anterior views.
The therapeutic dose of 131I-tositumomab, however, usually will exceed the 1,221-MBq (33-mCi) limit. Nuclear Regulatory Commission agreements in most states do allow the release of patients receiving this dose according to 10CFR35.75, which notes that a licensee may release a patient administered greater than 1,221 MBq (33 mCi) of a radiopharmaceutical or a permanent radioactive implant, provided that the total effective dose equivalent (TEDE) to any other individual from exposure to the released patient is not likely to exceed 5 mSv (500 mrem). (It should be noted that some states have specific requirements for compliance, while still allowing tositumomab and 131I-tositumomab therapy to be performed in an outpatient setting. The BSC can assist with state-specific information.) In order to comply with this “5-mSv rule,” 2 parameters are used: the TBRT and the dose rate at 1 m from the patient immediately after the therapeutic dose (6,7). The TBRT is determined in the dosimetric step. Therefore, the next step in determining when a patient can be released is measuring the dose rate at 1 m with a calibrated ionization chamber. An ion chamber is necessary because these instruments are energy independent and yield accurate dose rates regardless of the radionuclide being measured. The official equation used to determine the TEDE (mSv) to any exposed individual is $0.25 \times \text{dose rate} \times (8.95 + 0.99\text{TBRT})$.

The value 0.25 refers to the occupancy factor, which is an estimate of the percentage of time that a patient will spend at a distance of 1 m from another individual. Other values, for example, 0.5 or 0.125, are used if it is assumed that a greater or a lesser fraction of the day will be spent within this proximity to others. The dose rate is measured at 1 m with the calibrated ionization chamber. Training provided for the tositumomab and 131I-tositumomab therapeutic regimen includes a table to assist in this calculation.

In addition to determining the TEDE, an appropriate patient release procedure requires the following additional steps. An evaluation of the patient’s living and working conditions is needed to limit radiation exposure to others. Factors that should be considered include the patient’s willingness and ability to follow patient safety guidelines, to perform self-care, and to delay returning to work, living arrangements, potential for exposure to others during the trip home after treatment, procedures for notification of health care workers in the event that the patient is hospitalized or in need of medical care, and the presence of urinary incontinence. A record of the interview used to make these evaluations must be kept for 3 y.

Instructions need to be provided to the patient ready for release. Some of the instructions, which should be adhered to on a temporary basis, typically 1–2 wk, include sleeping in a separate bed (at least 1.8 m [6 ft] from anyone else), avoiding long trips (4 h or more) sitting near others, staying at least 1.8 m (6 ft) from children and pregnant women, minimizing the time spent in close contact with others, and delaying returning to work. The length of time needed to comply with any of the instructions is dependent on the TEDE as determined above. A table is provided to simplify this determination.

The template designed for determining the TBRT and the therapeutic dose calculation also contains spreadsheets to assist in determining when a patient can be released and providing instructions to the patient ready for release.

CONCLUSION

Nuclear medicine plays a major role in the successful implementation of RIT, as exemplified by the tositumomab and 131I-tositumomab therapeutic regimen. This factor signifies a new era of involvement for nuclear medicine in patient care with respect to cancer treatment and completes the circle for nuclear medicine as a resource for diagnostic
and therapeutic interventions. Nuclear medicine professionals now are afforded the opportunity to expand the impact of our direct patient contact to benefit patients at 2 very important stages of their interaction in the larger disease management environment. Nuclear medicine professionals should welcome these new challenges and responsibilities as further demonstration of their professionalism and commitment to the best patient care possible.

REFERENCES

[AQ1] Brand name was deleted from title and from Abstract per journal style (generic name was used instead). Brand name is allowed at first use in text.

[AQ2] Sense of sentence beginning “To maximize” OK as edited?

[AQ3] “on-site” correct for “site”?

[AQ4] OK to change “submits order documents with” to “submits order documents to”?

[AQ5] Per journal style, the SI unit “becquerel” is used in place of “millicurie.” Check changes throughout.

[AQ6] “mL” (the preferred SI unit) OK for “cc”? Please check changes throughout. Also, do you need to say what the antibody is mixed with to create the 50-mL solution? e.g., saline? Please check similar uses throughout.

[AQ7] Is “ALARA” spelled out correctly?

[AQ8] “semilogarithmic” correct for “semilog”?

[AQ9] “MBq/h” correct here for “mCi hr”? Also, please check sense of equation as edited.

[AQ10] OK to change “term” to “value for”?

[AQ11] What is “10CRF35.75”?

[AQ12] Which instruments are “these instruments”? Also, why is yielding accurate dose rates a reason for an ion chamber being necessary?

[AQ13] Equation OK as edited? In particular, is “DR” spelled out correctly?

[AQ14] In what unit is this value of 0.25 given? hours?

[AQ15] Is 2006 the correct publication date for reference 1?

[AQ16] OK to add “for patient with NHL” to distinguish first statement in Fig. 3 legend from those in Fig. 4 and Fig. 5 legends? See similar changes in the latter two legends.

[AQ17] Correct to change “second” to “third” in Fig. 4C legend? See also Fig. 5C legend.