Position Paper On Muticomepetency, Multiskilled, Multicredentialed Nuclear Medicine Technologists

Current literature on healthcare reform and allied health education has repeatedly emphasized the need for multi skilled and multi competent as well as multi credentialed workers. Historically, nuclear medicine technology developed as an additional competency for radiologic technologists and medical technologists. Thus our past is reflected in the educational programs accredited formerly by CAHEA and now by the JRCNMT.

Multiskilled, multicompetent

The American Heritage Dictionary, 1980 edition provides the following definitions:

Multi/Multiple: Consisting of more than one individual element
Skill: Proficiency; ability or dexterity; expertness
Competent: Properly or well-qualified, capable

Using the above definitions, as multi competent or multi skilled professionals, nuclear medicine technologists should be “capable and well-qualified, with more than one individual proficiency or ability.” With expertise in radiopharmacy, laboratory, imaging, patient care, and technical analysis, certified nuclear medicine technologists demonstrate multiple proficiencies.

Extended competencies both within and outside the traditional bounds of professional disciplines, including nuclear medicine technology, are now highly desirable by employers. Such opportunities enhance the technologist's employability in today's healthcare market and provide challenging career opportunities and career mobility, both vertically and laterally.

The multiskilled nuclear medicine technologist is competent in radiation safety and is knowledgeable about applicable regulations as they pertain to diagnostic and therapeutic radionuclides and serve as radiation safety officers in many institutions. Nuclear medicine technologists are educated in and very capable of working with computers and can expand their computer literacy to teleradiography and patient information systems. With a major emphasis placed on TQM/CQI in all phases of industry and healthcare, technologists are educated to recognize and work with 'quality assurance' in radiopharmacy, instrumentation, and patient care.

The profession of nuclear medicine technology encourages the development of career ladders (or lattices) to allow the technologist to move easily into work designs of the future. As the practice of medicine becomes more discipline-specific, technologist may work for nuclear medicine physicians, radiologists, cardiologists, oncologists and neurologists. Technologists may work in many aspects of home healthcare.

Building on "Performance and Responsibility Guidelines for the Nuclear Medicine Technologist" (1994), the profession should strive to broaden the technologist's skills in these areas. The technologist has the opportunity to become competent in the myriad of procedures ancillary to nuclear medicine diagnostic and therapeutic studies, particularly in the out-patient setting. Examples include but are not limited to the following:

1. Patient history and assessment
2. Monitoring of vital signs
3. Insertion and maintenance of intravenous lines and urinary catheters
4. Insertion and maintenance of heparin locks
5. Phlebotomy
6. Placement of leads and monitoring ECGs during cardiac studies
7. RIA/Ligand studies
With further education and training, the technologist may also place leads and monitor EEGs during neuroradiology studies and also be involved in health/wellness patient education.

Multicredentialled

In some instances additional credentials may be obtained, and such career moves are encouraged where possible. Technologists may become credentialled in other imaging modalities, such as radiography, sonography, MRI and so forth. With decreased emphasis placed on the hospital as the facility of choice for receiving healthcare in the future, such skills will be especially helpful to technologists seeking employment in smaller clinics and offices. Examples of other credentials that enhance employability would be in advanced cardiac life support (ACLS), echocardiography, emergency medicine, or as a physician assistant.

Regardless of the work setting, as they exist now or will exist in the future, nuclear medicine technologists should develop the additional skills necessary to facilitate patient care in diagnosis or therapeutic procedures utilizing ionizing radiation. These skills should become part of the formal education process in accredited nuclear medicine technology programs with demonstrated competencies. Experienced technologists should incorporate the skills needed in their communities via continuing education and be able to demonstrate competency as deemed appropriate by the employer. The professional society should provide a vigorous continuing education program at the grassroots level to enhance career mobility and employability on nuclear medicine technologists.